

Definitions – unconventional hydrocarbons

unconventional gas

- shale gas
- tight gas (low porosity/permeability, silt/sand)
- coal bed methane
- methane hydrates

unconventional oil

- oil shales
- oil sands, extra heavy oil and bitumen
- synthetic crude products
- liquids derived from natural gas

Conventional vs. Unconventional Natural Gas Resources

• Shales are fine grained sedimentary rocks, which can be a rich source of natural gas and petroleum.

Namurian (Millstone Grit) outcrop

Cambrian including Tremadoc outcrop

Namurian Subcrop

Main areas of prospective UK shale formations

- BGS & DECC: central estimate of 1,329 Tcf shale gas resource (gas-in-place) between Wrexham and Blackpool, and Nottingham and Scarborough
- What fraction of it is technically recoverable?
- 2012 UK natural gas consumption was ~3Tcf (DECC/BGS)

Source: THE UNCONVENTIONAL HYDROCARBON RESOURCES OF BRITAIN'S ONSHORE BASINS – SHALE GAS. Department of Energy & Climate Change, UK

What is a trillion cubic feet (Tcf)?

One trillion cubic feet of natural gas is enough gas to:

- Heat 15 million homes for one year
- Generate 100 billion kilowatt-hours of electricity
- Fuel 12 million natural gas-fired vehicles for one year

www.lovekin.co.uk

www.alstom.com

Shale gas production is technically and economically feasible because of:

- Horizontal drilling
- Hydraulic fracturing
- Rapid increase in natural gas prices

Source: "MODERN SHALE GAS DEVELOPMENT IN THE UNITED

STATES: A PRIMER". US.DOE/NETL (2009)

Horizontal drilling

Source: Hancock & The Marcellus Shale. Emily Weidenhof (ed) with V. Ngo and R. Gonzalez. Columbia University Urban Design Research Seminar (2009)

- Hit targets that cannot be reached by vertical drilling
- Increases accessibility within the target rock unit ("pay zone")
- Reduces surface footprint while increasing the production area from a single drilling pad
- Improve the productivity of wells in fractured reservoirs (e.g. shales)

Hydraulic Fracturing (fracking)

Hydraulic fracturing (HF)

Source: Hancock & The Marcellus Shale. Emily Weidenhof (ed) with V. Ngo and R. Gonzalez. Columbia University Urban Design Research Seminar (2009)

Typical drilling & hydraulic fracturing site

Columbia University Urban Design Research Seminar, 2009 http://www.urbandesignlab.columbia.edu/?pid=gas_extraction

Well Density – Pennsylvania USA

Composition of Hydraulic Fracturing Fluid

Compound	Purpose	Common application
Acids	Helps dissolve minerals and initiate fissure in rock (pre-fracture)	Swimming pool cleaner
Sodium Chloride	Allows a delayed breakdown of the gel polymer chains	Table salt
Polyacrylamide	Minimizes the friction between fluid and pipe	Water treatment, soil conditioner
Ethylene Glycol	Prevents scale deposits in the pipe	Automotive anti-freeze, deicing agent, household cleaners
Borate Salts	Maintains fluid viscosity as temperature increases	Laundry detergent, hand soap, cosmetics
Sodium/Potassium Carbonate	Maintains effectiveness of other components, such as crosslinkers	Washing soda, detergent, soap, water softener, glass, ceramics
Glutaraldehyde	Eliminates bacteria in the water	Disinfectant, sterilization of medical and dental equipment
Guar Gum	Thickens the water to suspend the sand	Thickener in cosmetics, baked goods, ice cream, toothpaste, sauces
Citric Acid	Prevents precipitation of metal oxides	Food additive; food and beverages; lemon juice
Isopropanol	Used to increase the viscosity of the fracture fluid	Glass cleaner, antiperspirant, hair coloring

Source: DOE, GWPC: Modern Gas Shale Development in the United States: A Primer (2009).

Water Consumption – Waste Water

- 4,200 gallons per minute ->
 ~4 million gallons per well
- 10-50% of injected water returns as waste water after pressure release and gas production
- Flowback + produced water:
- chemical additives from hydraulic fracturing + native chemical compounds from shale formation
- stored in surface ponds for re-use
- injection into deep waste disposal wells
- water treatment plant

Shale gas well – risk of leakage

e.g. Marcellus Shale gas wells (USA)

- 4,000 wells drilled between 2008-2011
- ~13% of wells had faulty pollution prevention
- ~10% had an actual pollution discharge
- Environmental violations spread unequally amongst gas companies
- Some companies had one violation every 5-10 wells drilled (Staff, 2012)
- Other companies had 2 violations per well (Staff, 2012)

Induced (micro) earthquakes

Greenhouse gas emissions

Natural gas is the cleanest fossil fuel

EXHIBIT 4: COMBUSTION EMISSIONS
(POUNDS/BILLION BTILOF ENERGY INPUT)

(1 GUNDS/ BILLION BTO OF ENERGY INFOT)					
Air Pollutant	Combusted Source				
	Natural Gas	Oil	Coal		
Carbon dioxide	117,000	164,000	208,000		
(CO ₂)					
Carbon monoxide	40	33	208		
(CO)					
Nitrogen oxides	92	448	457		
(NO _x)					
Sulfur dioxide (SO ₂)	0.6	1,122	2,591		
Particulates (PM)	7.0	84	2,744		
Formaldehyde	0.750	0.220	0.221		
Mercury (Hg)	0.000	0.007	0.016		

Source: EIA, 1998

Elevated methane emissions near shale gas production sites

2-8% loss of methane from a typical well

Howarth et al. Climate Change 2001; Cathles et al. G³, 2012; Osborn et al., PNAS, 2011

Research needs

- develop less hazardous fracking fluids
- reduce amount of water used in the process
- reduce gas leaks
- prevent release of hazardous substances into the environment (water & air)
- evaluate and minimize health effects
- minimize occurrence of microearthquakes

Appendix: History of shale gas

- 1821: First Commercial Gas well Fredonia, NY
 - Production from "Dunkirk Shale" at a depth of < 30 feet
- 1982: Barnett Shale Ft. Worth Basin development
- 1980s: Horizontal wells in Ohio Shales
- 1986: First use of hydraulic fracturing in Barnett Shale
- 1992: First horizontal well drilled in Barnett Shale
- 2006: Horizontal drilling in Appalachian Basin Shales

Appendix: Global shale gas resources

China > U.S. > Argentina > Mexico

Appendix: Shale gas & oil shales in USA

- ~1,700 trillion cubic feet (Tcf) of technically recoverable natural gas (~60% is unconventional gas)
- US total natural gas consumption in 2012 was 25.46 Tcf (EIA, 2012).

Table 3. Chemicals Components of Concern: Carcinogens, SDWA-Regulated Chemicals, and Hazardous Air Pollutants				
Onemeurs, and Tr		No. of		
Chemical Component	Chemical Category	Products		
Methanol (Methyl alcohol)	HAP	342		
Ethylene glycol (1,2-ethanediol)	HAP	119		
Diesel ¹⁹	Carcinogen, SDWA, HAP	51		
Naphthalene	Carcinogen, HAP	44		
Xylene	SDWA, HAP	44		
Hydrogen chloride (Hydrochloric acid)	HAP	42		
Toluene	SDWA, HAP	29		
Ethylbenzene	SDWA, HAP	28		
Diethanolamine (2,2-iminodiethanol)	HAP	14		
Formaldehyde	Carcinogen, HAP	12		
Sulfuric acid	Carcinogen	9		
Thiourea	Carcinogen	9		
Benzyl chloride	Carcinogen, HAP	8		
Cumene	HAP	6		
Nitrilotriacetic acid	Carcinogen	6		
Dimethyl formamide	HAP	5		
Phenol	НАР	5		
Benzene	Carcinogen, SDWA, HAP	3		
Di (2-ethylhexyl) phthalate	Carcinogen, SDWA, HAP	3		
Acrylamide	Carcinogen, SDWA, HAP	2		
Hydrogen fluoride (Hydrofluoric acid)	HAP	2		
Phthalic anhydride	HAP	2		
Acetaldehyde	Carcinogen, HAP	1		
Acetophenone	HAP	1		
Copper	SDWA	1		
Ethylene oxide	Carcinogen, HAP	1		
Lead	Carcinogen, SDWA, HAP	1		
Propylene oxide	Carcinogen, HAP	1		
p-Xylene	HAP	1		
Number of Products Containing a Com	652			

HF Cocktail

Table 1. Chemical Components Appearing Most Often in				
Hydraulic Fracturing Products Used Between 2005 and 2009				
	No. of			
	Products			
	Containing			
Chemical Component	Chemical			
Methanol (Methyl alcohol)	342			
Isopropanol (Isopropyl alcohol, Propan-2-ol)	274			
Crystalline silica - quartz (SiO2)	207			
Ethylene glycol monobutyl ether (2-butoxyethanol)	126			
Ethylene glycol (1,2-ethanediol)	119			
Hydrotreated light petroleum distillates	89			
Sodium hydroxide (Caustic soda)	80			

The oil and gas service companies used hydraulic fracturing products containing 29 chemicals that are

- (1) known or possible human carcinogens,
- (2) regulated under the Safe Drinking Water Act for their risks to human health, or
- (3) listed as hazardous air pollutants under the Clean Air Act